‘Bow Ties in Risk Management’

Charles Cowley, CCPS Staff Consultant, London; Energy Institute

Mark Scanlon, Head of HSE Good Practice, Energy Institute (Project Team Co-Chair)
Kiran Krishna, Principal Technical Safety Engineer, Shell, Houston, USA (Project Team Chair)
Tim McGrath, EHS Program Manager, Genentech, CA, USA (Project Team Vice Chair)
Martin Johnson, Principal Process Safety Engineer, BP, Sunbury, UK
Mark Manton, Principal Consultant, ABS Group, Warrington, UK
Ron McLeod, Consultant, Ron McLeod Ltd., Glasgow, UK
Rob Miles, Technical Director, Hu-Tech RMS, London, UK (Chair of EI HOFCOM)
Robin Pitblado, Senior Vice President, DNV GL, Katy, USA (Primary author of the book)
To protect people, property and the environment by bringing the best process safety knowledge and practices to industry, academia, the governments and the public around the world through collective wisdom, tools, training and expertise.

The EI’s purpose is to develop and disseminate knowledge, skills and good practice towards a safe, secure and sustainable energy system. It informs policy by providing a platform for debate and scientifically-sound information on energy issues. In fulfilling the EI’s mission, its Technical Work Program addresses the depth and breadth of the energy sector, from fuels and fuels distribution to health and safety, sustainability and the environment. This program provides cost-effective, value-adding knowledge on key current and future issues affecting those operating in the energy industry, both in the UK and internationally.
The basic Bow Tie

Hazard

Top Event
(= Release of the Hazard)

Prevention Barriers

Mitigation Barriers

Threat 1

Threat 2

Threat 3

Consequence

Consequence

Consequence
A good bow tie diagram summarises how a hazard is managed, in one understandable picture

• The diagram is shaped like a bow tie, creating a clear differentiation between the proactive (Prevention) and reactive (Mitigation) side of risk management.

• Very successful in helping to understand and communicate risks

• Used for process and non-process industry risks

• Aids understanding and management of barriers

• Now widely used by many companies

• But…
But.....
New book…!

BOW TIES IN RISK MANAGEMENT

A Concept Book for Process Safety

Anticipated book publishing

Q3 2018
Why a Bow Tie book?

- Confusion about who (and what) bow ties are for
- No generally accepted methodology and terminology
- Some typical problems with existing bow ties:
 - Structural errors: e.g. degradation controls shown as barriers
 - Lack of rigour in constructing bow tie elements:
 - Hazard or Top Event description vague, or confused with Consequence
 - Incomplete barriers: barrier elements listed as ‘the barrier’
 - Management System elements included as ‘barriers’
 - ‘Human and Organisational Factors’ confused and ineffective
 - Unfair criticism that bow ties over-simplify incident causation
What the book delivers

• Challenges to bow tie developers… (and suggested answers to these)
 o Why and for Whom are they making them?
 o How are they making them? (who should be involved?)

• Improved understanding of what constitute effective barriers and barrier degradation mechanisms

• Clearer portrayal of degradation controls and linkage to the management system and leadership

• Better treatment of ‘Human and Organizational Factors’

• Opportunity to standardize the industry approach and terminology

• Examples of poor and good practice

• Combined thoughts of a large number of experts – from Oil & Gas, Chemicals and other industries
Project Team Chair: Kiran Krishna, Shell
Co-Chair: Mark Scanlon, Energy Institute
Vice-Chair: Tim McGrath, Genentech (ex Chevron)
CCPS Staff Consultant: Charles Cowley
Principal author: Robin Pitblado, DNV GL
Sub-contractor to DNV GL: CGE Risk (Ben Keetlaer, Paul Haydock)

Project Team members

<table>
<thead>
<tr>
<th>CCPS</th>
<th>Energy Institute</th>
<th>Peer Review included:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin Johnson</td>
<td>Dennis Evers</td>
<td>UKPIA Major Hazards WG</td>
</tr>
<tr>
<td>Mark Manton</td>
<td>Peter Jeffries</td>
<td>H&SL</td>
</tr>
<tr>
<td>Ron McLeod</td>
<td>Rob Miles</td>
<td>API RP 75 revision WG</td>
</tr>
<tr>
<td>Darrin Miletello</td>
<td>Rob Saunders</td>
<td>COMAH, EA England</td>
</tr>
<tr>
<td>Americo Neto</td>
<td>Donald Smith</td>
<td>ExxonMobil - PS & Reliability</td>
</tr>
<tr>
<td>Sid Phakey</td>
<td></td>
<td>Prof Patrick Hudson</td>
</tr>
<tr>
<td>Keith Serre</td>
<td></td>
<td>Trish Kerin (IChemE SC)</td>
</tr>
<tr>
<td>Ryan Supple</td>
<td></td>
<td>Dr Sam Mannan MKOPSC</td>
</tr>
<tr>
<td>TV Venkateswaran</td>
<td></td>
<td>Ian Travers</td>
</tr>
<tr>
<td>Stephanie Wardle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danny White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>Centrica</td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>Phillips66</td>
<td></td>
</tr>
<tr>
<td>Ind. Consultant</td>
<td>Hu-Tech</td>
<td></td>
</tr>
<tr>
<td>Lyondellbasell</td>
<td>Shell</td>
<td></td>
</tr>
<tr>
<td>Braskem</td>
<td>ENI</td>
<td></td>
</tr>
<tr>
<td>Linde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nexen</td>
<td>Zsuzsanna Gyenes</td>
<td></td>
</tr>
<tr>
<td>ConocoPhillips</td>
<td>Maureen Wood</td>
<td></td>
</tr>
<tr>
<td>Reliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Husky Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP Billiton</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Team
1. **Hazard** The bowtie starts with the hazard

2. **Top Event** being the loss of control of the hazard (the centre of a bowtie)

3. **Consequences** of loss of control of the hazard are depicted on the right side (mitigation side) of the bow tie diagram.

4. **Threats** are depicted on the left side (prevention side) of the bow tie diagram.
Bow Tie terminology

Threat

Prevention Barrier

Hazard

Mitigation Barrier

Top Event

Degradation Control

Degradation Factor

Threat 1

Prevention Barrier 1

Prevention Barrier 2

Prevention Barrier 3

Degradation Factor A

Degradation Control 1

Degradation Control 2

Degradation Control 3

Consequence 1

Consequence 2

Copyright © Center for Chemical Process Safety of the American Institute of Chemical Engineers and the Energy Institute
Barrier:

- A risk reduction measure that on its own can prevent a threat developing into a top event (prevention side)
 …or can mitigate the consequences of a top event once it has occurred (mitigation side)

- Must be effective, independent and auditable

- Active barriers must have all 3 elements of Detect, Decide, Act
What counts as a barrier?

Effective
- *Prevention* barrier: capable on its own of preventing a threat developing into the top event
- *Mitigation* barrier: capable of reducing consequences

Independent
- no common failure modes with other barriers

Auditable
- There is a means to check that it works
- There are performance standards for functionality
What counts as a barrier?

Barrier:

- Active barriers must have all 3 elements of Detect, Decide, Act

Detect (e.g. pressure sensor) → Decide (e.g. logic controller determining ‘pressure too high’) → Act (e.g. Close ESD inlet valve)

Detect (e.g. Fire detection) → Decide (e.g. operators responds to alarm and activates fire water deluge) → Act (e.g. Sea water lift pump, fire water pump, fire main, deluge set, deluge pipework and nozzles)
Degradation Control:

- Similar to barrier, but only appears on Degradation Pathways
- Does not need to meet full criteria for barrier
Historically, some bow ties have been developed with vague descriptions of threats and barriers:

- How can the “human error” threat lead to the top event (if all barriers fail)?
- What are the Detect, Decide, Act components of these barriers?

But
Examples of poor quality bow ties

Bow ties do not work without rules for barriers

- Including everything connected with the top event does not help the understanding of barriers or risk management
- Example from a drilling contractor 20 prevention and 32 mitigation barriers!

- All these are probably important, but most will be degradation controls supporting a small number of actual barriers
Better treatment of humans...

Many current bow ties show Humans as threats

‘Human Error’ → ‘Procedures’ → ‘Training’ → Top Event

Human Error is correctly shown as a Degradation Factor
Then specific controls can be incorporated, to maintain the barrier strength

Specific operational threat → Barrier → Top Event

Degradation Factor - from specific type of human error → Specific Degradation Control

Copyright © Center for Chemical Process Safety of the American Institute of Chemical Engineers and the Energy Institute
Human Error

Human error is not a threat leading to a top event, but rather something that could defeat a barrier that is protecting against that top event.

Whenever someone is inclined to put ‘human error’ as a threat, they should challenge themselves by asking:

"what is the barrier or degradation control that this error would defeat"?
EXAMPLE:
Buncefield-type bow tie
Looking at the ‘Preventive’ barriers

All these barriers have ‘Detect, Decide, Act’

…and they are effective, independent and auditable

Next we will expand to show the degradation factors for this barrier
Degradation of barrier: ‘Tank Level Alarms & Operator Response’

‘Detect’ failure

‘Decide’ and ‘Act’ failure

This degradation leg can be expanded to become an Extension level 1 bow tie
Extension Level 1 bow tie
This shows the importance of Mgt System elements as Degradation Controls

This deeper-level degradation leg could now be further expanded into a Level 2 bowtie
Extension Level 2 bow tie – showing how good practices are also degradation controls supporting barrier strength
Bow Ties can improve *risk analysis* and *definition of barriers*:

- Determining potential accident pathways
- Assessing sufficiency, effectiveness and diversity of type of barriers
- Barrier types:
 - passive hardware (eg bund wall)
 - active hardware (eg Safety Instrumented Systems)
 - active hardware + human (eg alarm + operator action)
 - active human (eg operator observation round + action)
 - continuous hardware (eg ventilation system)

- Analysing potential barrier degradation mechanisms (factors) and their controls
Bow Ties can improve *implementation* of barriers:

- Help understand the hazards and how they are controlled
 - Operators, Managers, Regulators, others…

- Improve barrier ownership

- Prioritize audit, inspection and maintenance of barriers

- Help manage cumulative risk:
 …what is the *current condition* of barriers compared with the design intent?
Reducing Cumulative Risk

Design Basis

During Operations

With barrier management

Risk at Target

Risk well above target

Barrier 4 – New Temporary

Risk level assessed to allow continued operation

Risk returned to target
Barrier Condition and Scoring (EXAMPLE)

<table>
<thead>
<tr>
<th>Condition (simple)</th>
<th>Condition (detailed)</th>
<th>Color code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective</td>
<td>In place, available and effective</td>
<td>Green</td>
</tr>
<tr>
<td>Partially effective</td>
<td>In place and available, but operating below its intended functionality</td>
<td>Yellow</td>
</tr>
<tr>
<td>Not effective</td>
<td>Not in place, not available</td>
<td>Red</td>
</tr>
<tr>
<td>No data</td>
<td>No operational information is currently available</td>
<td>White</td>
</tr>
<tr>
<td>Deactivated</td>
<td>Not in place, turned-off, deactivated.</td>
<td>Black</td>
</tr>
</tbody>
</table>

Optional expansion of category ‘Not Effective’:
Can also be used to differentiate a local system from corporate standards.
Barrier condition is dynamic
Barrier condition is dynamic
Five key questions when your barriers are degraded in an operational system

1. **Consider the threats** - any changes in the context or demand under which the barriers operate (e.g. new threats; changes to throughput or environment)?

2. **What is the current barrier condition?**
 - Are all the existing barriers functioning as intended?
 - What is status of the barriers, against the design intent or performance standard?
 - Are any barriers unavailable or deactivated on a temporary or long-term basis?

3. **Can we continue operation, or do we need to shut down?**

4. **Are immediate measures required** to strengthen barriers or add temporary additional barriers to allow continued operation?

5. **How are the longer-term actions being prioritized** in order to restore barrier condition back to the design intent, or to meet the performance standard?
Well constructed bow ties make it very clear how risks are managed and major incidents avoided, and are increasingly used in high hazard industries.

This book reviews the bow tie method and explains how to construct highly effective bow ties and avoid common pitfalls, with sound and practical treatment of human and organizational factors.

It should be on the desk of all managers and engineers involved in operating hazardous facilities and in projects to build or change them…

Copyright © Center for Chemical Process Safety of the American Institute of Chemical Engineers and the Energy Institute
KEY TAKE-AWAYS

• Barriers must be effective, independent and auditable
 ... and encapsulate ‘Detect – Decide – Act’

• Clear distinction between barriers and degradation controls

• ‘Human error’ treated as a degradation mechanism, not a main pathway threat

• Multi-level bow ties show more clearly how barriers can degrade and the role of the management system and leadership in controlling degradation

• Bow ties make active barrier management clear and obvious

Copyright © Center for Chemical Process Safety of the American Institute of Chemical Engineers and the Energy Institute